Sunday 12 June 2011

Sirius

Sirius is the brightest star in the night sky. With a visual apparent magnitude of −1.46, it is almost twice as bright as Canopus, the next brightest star. The name "Sirius" is derived from the Ancient Greek Σείριος Seirios ("glowing" or "scorcher"). The star has the Bayer designation Alpha Canis Majoris (α CMa). What the naked eye perceives as a single star is actually a binary star system, consisting of a white main sequence star of spectral type A1V, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The distance separating Sirius A from its companion varies between 8.1 and 31.5 AU.
Sirius appears bright because of both its intrinsic luminosity and its proximity to Earth. At a distance of 2.6 parsecs (8.6 ly), the Sirius system is one of Earth's near neighbors. Sirius A is about twice as massive as the Sun and has an absolute visual magnitude of 1.42. It is 25 times more luminous than the Sun but has a significantly lower luminosity than other bright stars such as Canopus or Rigel. The system is between 200 and 300 million years old. It was originally composed of two bright bluish stars. The more massive of these, Sirius B, consumed its resources and became a red giant before shedding its outer layers and collapsing into its current state as a white dwarf around 120 million years ago.
Sirius is also known colloquially as the "Dog Star", reflecting its prominence in its constellation, Canis Major (Greater Dog). The heliacal rising of Sirius marked the flooding of the Nile in Ancient Egypt and the "dog days" of summer for the ancient Greeks, while to the Polynesians it marked winter and was an important star for navigation around the Pacific Ocean.

Discovery of a companion
In 1844 German astronomer Friedrich Bessel deduced from changes in the proper motion of Sirius that it had an unseen companion. Nearly two decades later, on January 31, 1862, American telescope-maker and astronomer Alvan Graham Clark first observed the faint companion, which is now called Sirius B, or affectionately "the Pup". This happened during testing of a 18.5 inch aperture great refractor telescope for Dearborn Observatory, which was the largest refracting telescope lens in existence at the time, and the largest telescope in America.
The visible star is now sometimes known as Sirius A. Since 1894, some apparent orbital irregularities in the Sirius system have been observed, suggesting a third very small companion star, but this has never been definitely confirmed. The best fit to the data indicates a six-year orbit around Sirius A and a mass of only 0.06 solar masses. This star would be five to ten magnitudes fainter than the white dwarf Sirius B, which would account for the difficulty of observing it. Observations published in 2008 were unable to detect either a third star or a planet. An apparent "third star" observed in the 1920s is now confirmed as a background object.

Red controversy
Around 150 AD, the Hellenistic astronomer Claudius Ptolemy described Sirius as reddish, along with five other stars, Betelgeuse, Antares, Aldebaran, Arcturus and Pollux, all of which are clearly of orange or red hue. The discrepancy was first noted by amateur astronomer Thomas Barker, squire of Lyndon Hall in Rutland, who prepared a paper and spoke at a meeting of the Royal Society in London in 1760. The existence of other stars changing in brightness gave credence to the idea that some may change in colour too; Sir John Herschel noted this in 1839, possibly influenced by witnessing Eta Carinae two years earlier. Thomas Jefferson Jackson See resurrected discussion on red Sirius with the publication of several papers in 1892, and a final summary in 1926. He cited not only Ptolemy but also the poet Aratus, the orator Cicero, and general Germanicus as colouring the star red, though acknowledging that none of the latter three authors were astronomers, the last two merely translating Aratus' poem Phaenomena. Seneca, too, had described Sirius as being of a deeper red colour than Mars. However, not all ancient observers saw Sirius as red. The 1st century AD poet Marcus Manilius described it as "sea-blue", as did the 4th century Avienus. It is the standard star for the color white in ancient China, and multiple records from the 2nd century BC up to the 7th century AD all describe Sirius as white in hue.
In 1985, German astronomers Wolfhard Schlosser and Werner Bergmann published an account of an 8th century Lombardic manuscript, which contains De cursu stellarum ratio by St. Gregory of Tours. The Latin text taught readers how to determine the times of nighttime prayers from positions of the stars, and Sirius is described within as rubeola — "reddish". The authors proposed this was further evidence Sirius B had been a red giant at the time. However, other scholars replied that it was likely St. Gregory had been referring to Arcturus instead.

Visibility
The image of Sirius A and Sirius B taken by the Hubble Space Telescope. The white dwarf can be seen to the lower left. The diffraction spikes and concentric rings are instrumental effects.
With an apparent magnitude of −1.46, Sirius is the brightest star in the night sky, almost twice the brightness of the second brightest star, Canopus. However, it is not as bright as the Moon, Venus, or Jupiter. At times, Mercury and Mars are also brighter than Sirius. Sirius can be seen from almost every inhabited region of the Earth's surface, with only those north of 73 degrees unable to see it. However, it does not rise very high when viewed from some northern cities, reaching only 13° above the horizon from Saint Petersburg. Sirius, along with Procyon and Betelgeuse, forms one of the three vertices of the Winter Triangle to observers in the Northern Hemisphere. Due to its declination of roughly −17°, Sirius is a circumpolar star from latitudes south of 73° S. From the Southern Hemisphere in early July, Sirius can be seen in both the evening where it sets after the Sun, and in the morning where it rises before the Sun.
Sirius can even be observed in daylight with the naked eye under the right conditions. Ideally, the sky should be very clear, with the observer at a high altitude, the star passing overhead, and the Sun low down on the horizon. These observing conditions are more easily met in the southern hemisphere, due to the southerly declination of Sirius.
The orbital motion of the Sirius binary system brings the two stars to a minimum angular separation of 3 arcseconds and a maximum of 11 arcseconds. At the closest approach, it is an observational challenge to distinguish the white dwarf from its more luminous companion, requiring a telescope with at least 300 mm (12 in) aperture and excellent seeing conditions. A periastron occurred in 1994 and the pair have since been moving apart, making them easier to separate with a telescope.
At a distance of 2.6 parsecs (8.6 ly), the Sirius system contains two of the eight nearest stars to the Solar System and is the fifth closest stellar system to ours. This proximity is the main reason for its brightness, as with other near stars such as Alpha Centauri and in stark contrast to distant, highly luminous supergiants such as Canopus, Rigel or Betelgeuse. However, it is still around 25 times more luminous than the Sun. The closest large neighbouring star to Sirius is Procyon, 1.61 parsecs (5.24 ly) away. The Voyager 2 spacecraft, launched in 1977 to study the four Jovian planets in the Solar System, is expected to pass within 4.3 light-years (1.3 pc) of Sirius in approximately 296,000 years.

Observational history
Sirius, known in ancient Egypt as Sopdet (Greek: Sothis), is recorded in the earliest astronomical records. During the era of the Middle Kingdom, Egyptians based their calendar on the heliacal rising of Sirius, namely the day it becomes visible just before sunrise after moving far enough away from the glare of the Sun. This occurred just before the annual flooding of the Nile and the summer solstice, after a 70-day absence from the skies. The hieroglyph for Sothis features a star and a triangle. Sothis was identified with the great goddess Isis, who formed a part of a trinity with her husband Osiris and their son Horus, while the 70-day period symbolised the passing of Isis and Osiris through the duat (Egyptian underworld).
The ancient Greeks observed that the appearance of Sirius heralded the hot and dry summer, and feared that it caused plants to wilt, men to weaken, and women to become aroused. Due to its brightness, Sirius would have been noted to twinkle more in the unsettled weather conditions of early summer. To Greek observers, this signified certain emanations which caused its malignant influence. People suffering its effects were said to be astroboletos (αστροβολητος) or "star-struck". It was described as "burning" or "flaming" in literature. The season following the star's appearance came to be known as the Dog Days of summer. The inhabitants of the island of Ceos in the Aegean Sea would offer sacrifices to Sirius and Zeus to bring cooling breezes, and would await the reappearance of the star in summer. If it rose clear, it would portend good fortune; if it was misty or faint then it foretold (or emanated) pestilence. Coins retrieved from the island from the 3rd century BC feature dogs or stars with emanating rays, highlighting Sirius' importance. The Romans celebrated the heliacal setting of Sirius around April 25, sacrificing a dog, along with incense, wine, and a sheep, to the goddess Robigo so that the star's emanations would not cause wheat rust on wheat crops that year.

No comments:

Post a Comment